BIENVENIDOS A EL GRUPO ARMAGEDON.

LES DAMOS LA BIENVENIDA AL GRUPO ARMAGEDON UN GRUPO DEDICADO A LA INVESTIGACIÓN Y CON LA META DE AUMENTAR TUS CONOCIMIENTOS ESPERAMOS OFRECERTE UN BUEN SERVICIO Y PODER SOLUCIONAR TODAS TUS DUDAS.

martes, 15 de junio de 2010

GRÁFICAS EN 3 DIMENSIONES

¿ QUE ES TRIDIMENSIONAL?

En geometría y análisis matemático, un objeto o ente es tridimensional si tiene tres dimensiones. Es decir cada uno de sus puntos puede ser localizado especificando tres números dentro de un cierto rango.

En un espacio euclídeo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundidad. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos como la gravedad, la teoría de la relatividad nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes "secciones espaciales" de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.

No se conoce exactamente por qué nuestro universo parece tridimensional; más exactamente, en las teorías actuales no existe una razón clara para que el número de dimensiones espaciales extensas (no-compactificadas) es igual a tres. Aunque existen ciertas intuiciones sobre ello: Ehrenfest señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo). También se sabe que existe una conexión entre la intensidad de un campo de fuerzas estático consimetría esférica que satisface el teorema de Gauss y la dimensión del espacio (d), un campo gravitatorio, electrostático o de otro tipo que cumpla con dichas condiciones para grandes distancias debe tener una variación de la forma:

\phi =k_\phi \frac{f}{r^{d-1}} \qquad d \ge 3

Donde:

\phi\, es la intensidad del campo.
k_\phi\, es una constante de proporcionalidad (k_\phi=-G\, para el campo gravitatorio).
f\, es una magnitud extensiva que mida la capacidad de fuente para provocar el campo, para un campo gravitatorio coincide con la masa y para uno eléctrico con la carga.
r\, es la distancia al "centro" o fuente que crea el campo.
d\, es la dimensión del espacio.

EXPERIMENTO

MATERIALES.

  1. 3 estacas de igual tamaño
  2. pitas
  3. marcadores
  4. regla

PROCEDIMIENTO
lo primero que se debe hacer es clavar las estacas en el piso formando un plano cada una con un eje X,Y,Z las estacas deben estar previamente enumeradas empezando desde 0 luego después de que los puntos ya estén determinados pasamos a graficar con las pitas cuando ya hallamos fraficado el punto x y y el punto z se hala hacia adelante con una pita mas larga y se amarra a esta que esta amarrada a unos cuantos metros del plano luego de tener todos los planos vamos a tener una especie de telaraña.

así como se muestra en las siguientes imágenes.

PURIFICACION DEL AGUA POR FILTRO DE ARENA


los filtros de arena son muy utiles en caso de purificar el agua ya que eliminan las impurezas y la hacen aptas para el consumo humano el filtro de arena es muy facil de construir y se pueden utilizar otros elementos como el carbon, gravilla, papel filtpo, tela,y otros elementos para aumentar su efectividad y calidad.


PURIFICACION DEL AGUA UTILIZANDO EL METODO SOLAR.




para purificar el agua y utilizando metodos naturales podemos utilizar uno de los recursos mas abundantes en el ambiente, la luz solar para esto podemos tomar una botella de plastico y llenarla asta la mitad luego la tapamos y la sacudimos por 2 o 3 minutos a continuacion la llenamos por completo y la dejamos en un lugar donde le de la luz directa del sol luego de 3 o 4 horas las bacterias y parasitos dañinos habran sido eliminados.

COHETE CASERO PROPULSADO POR AGUA


MATERIALES



  1. una botella de plastico

  2. un corcho

  3. unabomba o un compresor

  4. una aguja de imflar balones

ELABORACION



  1. del mismo modo que los tecnicos aeroespaciales antes de lanzar su cohete construyen un anclaje nosotros aremos una rampla para nuestro prototipo utilizando dos tablas y algunos listones de madera para mantener la botella a una distancia considerable del piso.

  2. luego introduciremos el agua en nuestra botella y lo taparemos con el corcho que sera atravesado por la aguja.

  3. luego empezaremos a bombear agua dentro de la botella asta que el cohete salga propulsado por el aire y el agua combinados.

PARA MAS IMFORMACION VISITAR EL SIGUIENTE ENLACE:


http://cultura.terra.es/cac/interactivos/cohetecasero.htm

CARRO ROPULSADO POR AGUA Y AIRE

MATERIALES
  1. botella plastica
  2. alambre
  3. cinta
  4. balbula de sellomatic
  5. silicona liquida y de vidrio
  6. cascarones de esfero
  7. latas de refresco

ELABORACION

lo primero que haremos sera embolver los alambres en los extremos de la botella,luego tomaremos las latas y les quitaremos las tapas luego las uniremos en pares y formaremos una especie de llantas que seran atravesados por los esferos y luego por los almbres luego ubibaremos las llantas una adelante mas alta y dos en la parte de atras mas bajas en la punt abierta de la botella luego aseguraremos con cinta y asi tenemos nuestro armason.

PROPULSION

para propulsar nuestro carro tomaremos la tapa de la botella y le haremos un agujero luego meteremos el sellomatic por este agujero y lo aseguraremos con silicona para asi evitar algun eacape de aire o de agua luego introducimos agua en la botella y la tapamos muy bien seguidamente introducimos aire detro de la botella con ayuda de una bomba asta que el carro despegue y avanse propulsado por el agua.

miércoles, 10 de febrero de 2010

HISTORIA DE LA FISICA

FÍSICA CLÁSICA

Hacia 1880 la física presentaba un panorama de calma: la mayoría de los fenómenos podían explicarse mediante la mecánica de Newton, la teoría electromagnética de Maxwell, la termodinámica y la mecánica estadística de Boltzmann. Parecía que sólo quedaban por resolver unos pocos problemas, como la determinación de las propiedades del éter y la explicación de los espectros de emisión y absorción de sólidos y gases. Sin embargo, estos fenómenos contenían las semillas de una revolución cuyo estallido se vio acelerado por una serie de asombrosos descubrimientos realizados en la última década del siglo XIX: en 1895, Wilhelm Conrad Roentgen descubrió los rayos X; ese mismo año, Joseph John Thomson descubrió el electrón; en 1896, Antoine Henri Becquerel descubrió la radiactividad; entre 1887 y 1899, Heinrich Hertz, Wilhelm Hallwachs y Philipp Lenard descubrieron diversos fenómenos relacionados con el efecto fotoeléctrico. Los datos experimentales de la física, unidos a los inquietantes resultados del experimento de Michelson-Morley y al descubrimiento de los rayos catódicos, formados por chorros de electrones, desafiaban a todas las teorías disponibles.


FÍSICA MODERNA

Dos importantes avances producidos durante el primer tercio del siglo XX -la teoría cuántica y la teoría de la relatividad- explicaron estos hallazgos, llevaron a nuevos descubrimientos y cambiaron el modo de comprender la física.


FÍSICA NUCLEAR

En 1931 el físico estadounidense Harold Clayton Urey descubrió el isótopo del hidrógeno denominado deuterio y lo empleó para obtener agua pesada. El núcleo de deuterio o deuterón (formado por un protón y un neutrón) constituye un excelente proyectil para inducir reacciones nucleares. Los físicos franceses Irène y Frédéric Joliot-Curie produjeron el primer núcleo radiactivo artificial en 1933-1934, con lo que comenzó la producción de radioisótopos para su empleo en arqueología, biología, medicina, química y otras ciencias.

Fermi y numerosos colaboradores emprendieron una serie de experimentos para producir elementos más pesados que el uranio bombardeando éste con neutrones. Tuvieron éxito, y en la actualidad se han creado artificialmente al menos una docena de estos elementos transuránicos. A medida que continuaba su trabajo se produjo un descubrimiento aún más importante. Irène Joliot-Curie, los físicos alemanes Otto Hahn y Fritz Strassmann, la física austriaca Lise Meitner y el físico británico Otto Robert Frisch comprobaron que algunos núcleos de uranio se dividían en dos partes, fenómeno denominado fisión nuclear. La fisión liberaba una cantidad enorme de energía debida a la pérdida de masa, además de algunos neutrones. Estos resultados sugerían la posibilidad de una reacción en cadena automantenida, algo que lograron Fermi y su grupo en 1942, cuando hicieron funcionar el primer reactor nuclear. Los avances tecnológicos fueron rápidos; la primera bomba atómica se fabricó en 1945 como resultado de un ingente programa de investigación dirigido por el físico estadounidense J. Robert Oppenheimer, y el primer reactor nuclear destinado a la producción de electricidad entró en funcionamiento en Gran Bretaña en 1956, con una potencia de 78 megavatios.

La investigación de la fuente de energía de las estrellas llevó a nuevos avances. El físico estadounidense de origen alemán Hans Bethe demostró que las estrellas obtienen su energía de una serie de reacciones nucleares que tienen lugar a temperaturas de millones de grados. En estas reacciones, cuatro núcleos de hidrógeno se convierten en un núcleo de helio, a la vez que liberan dos positrones y cantidades inmensas de energía. Este proceso de fusión nuclear se adoptó con algunas modificaciones -en gran medida a partir de ideas desarrolladas por el físico estadounidense de origen húngaro Edward Teller- como base de la bomba de fusión, o bomba de hidrógeno. Este arma, que se detonó por primera vez en 1952, era mucho más potente que la bomba de fisión o atómica. En la bomba de hidrógeno, una pequeña bomba de fisión aporta las altas temperaturas necesarias para desencadenar la fusión, también llamada reacción termonuclear.

Gran parte de las investigaciones actuales se dedican a la producción de un dispositivo de fusión controlada, no explosiva, que sería menos radiactivo que un reactor de fisión y proporcionaría una fuente casi ilimitada de energía. En diciembre de 1993 se logró un avance significativo en esa dirección cuando los investigadores de la Universidad de Princeton, en Estados Unidos, usaron el Reactor Experimental de Fusión Tokamak para producir una reacción de fusión controlada que proporcionó durante un breve tiempo una potencia de 5,6 megavatios. Sin embargo el reactor consumió más energía de la que produjo.


FÍSICA DEL ESTADO SÓLIDO

En los sólidos, los átomos están densamente empaquetados, lo que lleva a la existencia de fuerzas de interacción muy intensas y numerosos efectos relacionados con este tipo de fuerzas que no se observan en los gases, donde las moléculas actúan en gran medida de forma independiente. Los efectos de interacción son responsables de las propiedades mecánicas, térmicas, eléctricas, magnéticas y ópticas de los sólidos, un campo que resulta difícil de tratar desde el punto de vista teórico, aunque se han realizado muchos progresos.

Una característica importante de la mayoría de los sólidos es su estructura cristalina, en la que los átomos están distribuidos en posiciones regulares que se repiten de forma geométrica. La distribución específica de los átomos puede deberse a una variada gama de fuerzas. Por ejemplo, algunos sólidos como el cloruro de sodio o sal común se mantienen unidos por enlaces iónicos debidos a la atracción eléctrica entre los iones que componen el material. En otros, como el diamante, los átomos comparten electrones, lo que da lugar a los llamados enlaces covalentes. Las sustancias inertes, como el neón, no presentan ninguno de esos enlaces. Su existencia es el resultado de las llamadas fuerzas de van der Waals, así llamadas en honor al físico holandés Johannes Diderik van der Waals. Estas fuerzas aparecen entre moléculas o átomos neutros como resultado de la polarización eléctrica. Los metales, por su parte, se mantienen unidos por lo que se conoce como gas electrónico, formado por electrones libres de la capa atómica externa compartidos por todos los átomos del metal y que definen la mayoría de sus propiedades.

Los niveles de energía definidos y discretos permitidos a los electrones de átomos individuales se ensanchan hasta convertirse en bandas de energía cuando los átomos se agrupan densamente en un sólido. La anchura y separación de esas bandas definen muchas de las propiedades del material. Por ejemplo, las llamadas bandas prohibidas, en las que no pueden existir electrones, restringen el movimiento de éstos y hacen que el material sea un buen aislante térmico y eléctrico. Cuando las bandas de energía se solapan, como ocurre en los metales, los electrones pueden moverse con facilidad, lo que hace que el material sea un buen conductor de la electricidad y el calor. Si la banda prohibida es estrecha, algunos de los electrones más rápidos pueden saltar a la banda de energía superior: es lo que ocurre en un semiconductor como el silicio. En ese caso, el espacio entre las bandas de energía puede verse muy afectado por cantidades minúsculas de impurezas, como arsénico. Cuando la impureza provoca el descenso de una banda de energía alta, se dice que es un donante de electrones, y el semiconductor resultante se llama de tipo n. Cuando la impureza provoca el ascenso de una banda de energía baja, como ocurre con el galio, se dice que es un aceptor de electrones. Los vacíos o 'huecos' de la estructura electrónica actúan como si fueran cargas positivas móviles, y se dice que el semiconductor es de tipo p. Numerosos dispositivos electrónicos modernos, en particular el transistor, desarrollado por los físicos estadounidenses John Bardeen, Walter Houser Brattain y William Bradford Shockley, están basados en estas propiedades de los semiconductores.

Las propiedades magnéticas de los sólidos se deben a que los electrones actúan como minúsculos dipolos magnéticos. Casi todas las propiedades de los sólidos dependen de la temperatura. Por ejemplo, los materiales ferromagnéticos como el hierro o el níquel pierden su intenso magnetismo residual cuando se los calienta a una temperatura característica denominada temperatura de Curie. La resistencia eléctrica suele decrecer al disminuir la temperatura, y en algunos materiales denominados superconductores desaparece por completo en las proximidades del cero absoluto. Éste y muchos otros fenómenos observados en los sólidos dependen de la cuantización de la energía, y la mejor forma de describirlos es a través de 'partículas' efectivas con nombres como fonón, polarón o magnón.

ALBERT EINSTEIN


Tímido y retraído, con dificultades en el lenguaje y lento para aprender en sus primeros años escolares; apasionado de las ecuaciones, cuyo aprendizaje inicial se lo debió a su tío Jakov que lo instruyó en una serie de disciplinas y materias, entre ellas álgebra: "...cuando el animal que estamos cazando no puede ser apresado lo llamamos temporalmente "x" y continuamos la cacería hasta que lo echamos en nuestro morral", así le explicaba su tío, lo que le permitió llegar a temprana edad a dominar las matemáticas. Dotado de una exquisita sensibilidad que desplegó e el aprendizaje del violín, Albert Einstein fue el hombre destinado a integrar y proyectar, en una nueva concepción teórica, el saber que muchos hombres de ciencia anteriores prepararon con laboriosidad y grandeza.

Nacido en Ulm, Alemania el 14 de marzo de 1879. Antes cumplir dos años, su familia se trasladó a Munich, donde permaneció hasta 1895, período en el cual vio su vida trastornada cuando su familia se trasladó a Italia después del hundimiento de la firma eléctrica de su padre en Munich. Dejado en Munich para que terminara el año escolar, Albert decidió muy pronto abandonar el curso. y reunirse con su familia, cuando aún le faltaban tres años para terminar su educación media. El colegio no lo motivaba; era excelente en matemáticas y física pero no se interesaba por las otras materias. Así, a la edad de dieciséis años, Albert tuvo la oportunidad de conocer la gran tradición cultural italiana; admirar las obras de Miguel Ángel, que le impactara profundamente, y recorrer Italia pensando y estudiando por su cuenta. Durante este período empezó a contemplar los efectos del movimiento a la velocidad de la luz, un rompecabezas cuya resolución cambiaría para siempre la, física y la cosmología.

En Italia tuvo toda la libertad que quería y gozó por un tiempo de su vida, pero su padre lo obligó a pensar en la universidad. Regresó a Munich y luego se traslado a Zurich, en Suiza, para continuar sus estudios. En esta última ciudad no pudo ingresar a la universidad debido a no haber completado sus estudios secundarios. Alternativamente decidió incorporarse al Instituto Politécnico de Zurich, donde logró estudiar física y matemáticas con Heinrich Weber y Hermann Minkowski. Fue condiscípulo de Marcel Grossmann, que llegó a ser su gran amigo. Pero en la nación helvética, los caminos que tuvo que recorrer Albert Einstein no fueron fáciles. Llegó a conocer el hambre, la segregación académica - por no ser suizo - y también llegó a casarse con una joven matemática croata, Mileva Maric, luego de haber terminado sus estudios, en el año 1900, y de haber obtenido la nacionalidad suiza.

Con la graduación llegó el final de la asignación que le pasaba su familia, y Einstein tuvo que buscar trabajo. Sin recomendaciones -más tarde recordó que "no estaba en buenas relaciones con ninguno de sus anteriores maestros"-, no pudo encontrar ningún trabajo permanente y tuvo que arreglárselas de maestro para dictar clases particulares y/o a tiempo parcial. Después de dos años de empleos esporádicos, Einstein se volvió a beneficiar de la amistad de Marcel Grossmann, a quién había conocido en sus tiempos de estudiantes del Instituto Politécnico de Zurich, que por aquel entonces estaba enseñando matemáticas. A través de su contacto familiar, Grossmann consiguió para Einstein un puesto como experto técnico de tercera clase en la Oficina de Patentes suiza en Berna.

Trabajando en la oficina de patentes de Berna, Einstein pudo escamotear tiempo en su trabajo, gracias al dominio que había logrado en las funciones que desempeñaba, y dedicarlo para sus propios estudios sobre temas tales como las propiedades físicas de la luz. Por las noches trabajaba en ciencias o invitaba a algunos amigos a su apartamento para hablar de física, filosofía y literatura. Estas reuniones solían ser animadas y ruidosas duraban hasta altas horas de la noche, ante la irritación de sus vecinos. Aunque Einstein era esencialmente un solitario, la oportunidad de desarrollar ideas y probarlas sobre los agudos intelectos de sus amigos era valiosísima. Empezó a publicar los resultados de sus investigaciones en uno de los principales diarios científicos, y focalizó sus intuitivos análisis sobre las implicaciones de la cuestión que lo había intrigado años antes: ¿Cómo sería cabalgar en un rayo de luz?